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Abstract: Partial differential equations are very important tools for mathematical modeling in some field like; physics, 

engineering and applied Mathematics. It’s worth knowing that only few of this equation can be solved analytically and 

numerical method have been proven to perform exceedingly well in solving even difficult partial differential equations. Finite 

difference method is a popular numerical method which has been applied extensively to solve partial differential equations. A 

well known type of this method is the Classical Crank-Nicolson scheme which has been used by different researchers. In this 

work, we present a modified Crank-Nicolson scheme resulting from the modification of the classical Crank-Nicolson scheme 

to solve one dimensional parabolic equation. We apply both the Classical Crank-Nicolson scheme and the modified Crank-

Nicolson scheme to solve one dimensional parabolic partial differential equation and investigate the results of the different 

schemes. The computation and results of the two schemes converges faster to the exact solution. It is shown that the modified 

Crank-Nicolson method is more efficient, reliable and better for solving Parabolic Partial differential equations since it requires 

less computational work. The method is stable and the convergence is fast when the results of the numerical examples where 

compared with the results from other existing classical scheme, we found that our method have better accuracy than those 

methods. Some numerical examples were considered to verify our results. 

Keywords: Finite Difference Method, Parabolic Equation, Crank-Nicolson Scheme, Modified Crank-Nicolson Method, 

Stability 

 

1. Introduction 

Partial differential equations are the basis of many 

mathematical models of Physics, Chemistry, and Biology 

even in Finance. Approximating solutions of partial 

differential equations is very necessary and important, so as 

to investigate the predictions of the mathematical models, as 

exact solutions are usually difficult and uneasy to obtain. 

Problems involving time t as one independent variable result 

most usually to parabolic equation, which are derives from 

the theory of heat conduction. Solutions of such problems 

can be obtained by numerical methods. 

Many researchers have worked on the well-known 

parabolic partial differential equation (the one dimensional 

heat conduction equation) using various numerical methods 

but of all the numerical methods, finite difference methods 

are mostly used. There are many types of finite difference 

approximation used to solve the heat equation. We have the     

explicit and implicit finite difference methods and their 

modifications. 

C. E. Abhulimen and B. J. Omowo [1] solved the heat 

diffusion problem using modified Crank-Nicolson method 

and compare the solution with the exact solutions. J. Crank 

and N. Philis [2] considered a practical method for numerical 

solution of partial differential equations of heat conduction 

type. E. C. DuFort and S. P. Frankel [4] modified the simple 

explicit scheme (FTCP) and proved that it is much more 

stable than the simple explicit case, enabling larger time steps 

to be used. S. E. Fadugba, et. al [6] applied Crank-Nicolson 



36 Omowo Babajide Johnson and Longe Idowu Oluwaseun:  Crank-Nicolson and Modified Crank-Nicolson  

Scheme for One Dimensional Parabolic Equation 

method to parabolic partial differential equation problems 

and demonstrated that the method is good for such problems. 

H. A. Isede [10] presented the Crank-Nicolson method being 

juxtaposed with the analytical solution applied to the 

diffusion equation. 

J. Cooper [3], E. Kreyszig [11], G. D. Smith [13], and 

Williams. F. Ames [14] are very good and exhaustive texts on 

finite difference method among others. 

Partial differential equations are problems involving 

rate of change of functions of several variables. For 

examples 

a) Advectionequation: 
����+v

����=0 

b) Heatequation: 
����=D

�²���² 
c) Poissonequation: 

�²���²-�²���²=u (x, y) 

d) Waveequation: 
�²���²-�²���²=0 

In the above equations, x, y are space coordinates, v, 

D, c, are real positive constants and t, x are often said to be 

time and space coordinates respectively. The general second 

order linear partial differential equation with two independent 

variables and one dependent variable is given by 

A
�²���²+B

�²�����+C
�²���²+D=0                        (1) 

Here, A, B, C are functions of independent variables, and x, 

y, D are functions of x, y, f, 
���� and ����. It is important to note 

that for a parabolic partial differential equation to be 

parabolic, b
2
 – 4ac=0 is required. The one dimensional heat 

conduction equation of the form 

���� = �²���²                                     (2) 

Is a well known example of a parabolic partial differential 

equations. The solution of these equation is a temperature  

function (x, t) which is defined for values of x from 0 to l and 

for values of t from 0 to ∞. The solution is not defined in a 

closed domain but advances in an open- ended region from 

initial values satisfying the prescribed boundary conditions. 

2. Finite Difference Method 

This is a method for solving partial differential equations. 

The procedure is simply by substituting the partial 

derivatives by difference equations in order to obtain the 

numerical solutions. There are different types of finite 

difference methods but we shall focus on the following in 

this work: 

a) Crank–Nicolson Method and 

b) Modified Crank-Nicolson Method 

We shall use the following finite difference approximation 

as seen in Williams. F. Ames [14]. 

����=
�
,�
� ��
,��  

��  �� =
�
,�
� ��
,�����                                (3) 

�²���²=�

�,�� ��
,�� �
��,��²  

and 

�²���²=�

�,���
,,�
���
,���� �
��,��²  

2.1. Derivation of Crank-Nicolson Scheme 

The classical Crank-Nicolson scheme is derived using the 

implicit scheme and the explicit finite difference scheme. 

Using finite difference approximation (3) that is, 

���� = �
,�
� ��
,��  and 

�²���² = ����,� −  2��,� +  ����,�ℎ²  

Then equation (2) is analogue to 

�� (��,��� − � ,!)=
��² (����,� − 2��,� + ����,�             (4) 

In equation (4), the function values along the j
th

 row only 

is used. The (j+1)
th

 approximation for fxx in (2) is given by 1$ (��,��� − ��,�) = ����,��� −  2��,��� + ����,���ℎ²  

Taking average of the j
th

 and (j+1)
th

 rows we have 

�
,�
� ��
,�� =
��[

�
��,�� ��
,�� �

�,��² ]+ 

��[
�
��,�
� � ��
,�
� � �

�,�
��² ] 

(2) is therefore replaced with 

2(��,��� − � ,�) = $ℎ� (����,� − 2��,� 

+����,� +  ����,��� − 2��,��� + ����,���)            (5) 

Let
��²=r, on solving we get 

-r����,��� +  (2 + 2%)��,��� − %����,���=r����,� + (2 − 2%)��,� + %����,� 

which can be written as 

2(1+r)��,��� −  %[����,��� + ����,��� ]=2(1–r)��,� +  %[����,� + ����,�]                                        (6) 

Equation (6) is the Crank-Nicolson scheme. 

2.2. Derivation of Modified Crank-Nicolson Scheme 

For the derivation of the Modified Crank-Nicolson scheme, 

L. H. S of (5) is replaced by
�
,���
,����  and the (j+1)

th
 row 

becomes (j-1)
th

 row, then the finite difference analogue for (2) 

becomes 

2(��,� − ��,���)=
��²(����,��� −  2��,��� +  ����,��� +  ����,� − 2��,� +  ����,�)                              (7) 
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Put %=
��², on solving we have 

−2%��,��� +  2��,��� +  %����,��� +  %����,���=−%����,� + 2��,� +  2%��,� − %����,� 

which can be written as 

2(1 + %)��,� − %(����,� + ����,�)=2(1 − %)��,��� +%(����,��� + ����,��� )                            (8) 

(8) is our modified Crank-Nicolson scheme, which allows 

the computation to start from i=1, j=1 different from the 

classical Crank-Nicolson whose computation starts from i=1, 

j=0. 

2.3. Stability of Crank-Nicolson Scheme 

Consider the equation (6) given as 

2(1+r)��,��� −  %[����,��� + ����,��� ]=2(1–r)��,� +  %[����,� + ����,�] 
worse case solution is given as ��,�=*�(−1)�(high frequency x-oscillations in index i)  (9) 

substituting (9) into (7) to get 2(1 + %)*���(−1)� − %*���(−1)���[(-1)��� + (−1)���]=2(1 − %)*�(−1)�+*%�(−1)��� +  *%�(−1)��� %[−*(−1) − 1 + 2(1 + %) − *(−1) + 1] = %(−1) − 1 +2(1 − %) + %(−1) + 1                                   (10) 

which gives 

α=
[���+][���+] 

then 

|α=
���+���+|→|α|<1,∀ α>0                   (11) 

The stability of modified Crank-Nicolson method is 

derived using the same approach in C. E. Abhulimen and B. J. 

Omowo [1]. The modified Crank-Nicolson method is 

unconditionally stable and has higher order accuracy. The 

price of solving a tri-diagonal system at each step is worth 

paying since the method allows large step sizes. 

3. Numerical Examples 

This section presents some numerical examples, where we 

compare the computation results of both the classical Crank-

Nicolson method and the modified Crank-Nicolson method. 

Example1: 

Derive the exact solution of the partial differential 

equation and confirm the results using Crank-Nicolson 

scheme and Modified Crank-Nicolson Scheme. 

. �� �/���/ = ���� , 0 ≤ � ≤ 4345ℎ�(�, 0) = �(4 − �)678�(0, 5) = 0 = �(4, 5)                      (12) 

Solution: 

The exact solution of example 1 above is derived in C. E. 

Abhulimen and B. J. Omowo [1] and is given by 

� = 128:; sin ?7:4 @ �A�(B/C/D/ )�
 

from where the analytical solutions for  ��,�� 678 �;  are 

2.1356, 3.03258 and 2.1356 respectively. 

Now, let solve example 1 above using Crank-Nicolson 

scheme as follows: 

Crank-Nicolson scheme is given by (6) 

at 4 =1, j=0, we have 

3��.�-0.5�F,�–0.5��,�=��,F+0.5��,F 

3��,�-0.5��,�=5                                      (13) 

at 2 ≤ 4 ≤ 3, j=0, we have the following 

3��,�–0.5��,�–0.5�;,�=7                                (14) 

3�;,�–0.5��,�–0.5�I,�=5                               (15) 

solving equations (13)-(15) we have that ��,� = 2.1765, ��,� = 3.0588 and �;,� = 2.1765  

Now, we move to the next step at 1 ≤ 4 ≤ 3, L = 1, we 

have the following equations 

3��,�-0.5��,�=3.7059                                           (16) 

3��,�–0.5��,�–0.5�;,�=5.2353                                 (17) 

3�;,�–0.5��,�=3.7059                                           (18) 

solving the equations (16)-(18) we have ��,� = 1.6159, ��,� = 2.287,  �;,� = 1.6159 

for next step, at 1 ≤ 4 ≤ 3, L = 2,  we have the following 

equations 

3��,;–0.5��,;=2.75775                                           (19) 

3��,;–0.5��,;–0.5�;,;=3.8996                                  (20) 

3�;,;–0.5��,;–0.5�I,;=2.75775                               (21) 

Solving equations (19)-(21) we get ��,; = 1,2027, ��,; =1.7008, �;,; = 1.202. 
We shall now apply the Modified Crank-Nicolson scheme 

to solve the same problem (example 1) as follows: 

Modified Crank-Nicolson scheme is given by (7) 

at  1 ≤ 4 ≤ 3, L = 1 (firststep) we have the following 

equations 

3��,�-0.5��,�=5                                      (22) 

3��,� – 0.5��,� – 0.5�;,�=7                     (23) 

3��,�–0.5��,�–0.5�;,�=7(23) 3�;,�–0.5��,�=5                (24) 
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solving equations (22)-(24) we have that ��,� = 2.1765, ��,� = 3.0588 and �;,� = 2.1765 

next step is at 1 ≤ 4 ≤ 3, L = 2, we have 

3��,�-0.5��,�=3.7059                              (25) 

3��,�–0.5��,�–0.5�;,�=5.2353                       (26) 

3�;,�–0.5��,�=3.7059                               (27) 

Solving the equations (25)-(27) we have 

��,� = 1.6159, ��,� = 2.287,�;,� = 1.6159 

next step is at 4=1, j=3 

3��,;–0.5��,;=2.75775                                 (28) 

at 4=2, j=3 

3��,;–0.5��,;–0.5�;,;=3.8996                          (29) 

at 4=3, j=3 

3�;,;–0.5��,;–0.5�I,;=2.75775                          (30) 

solving equations (28)-(30) we get ��,; = 1,2027,  ��,; =1.7008, �;,; = 1.2027. 
Example2 

Solve the parabolic equation using Crank-Nicolson scheme 

and Modified Crank-Nicolson scheme 

�/���/ − ���� = 0  345ℎ �(�, 0) = ��(25 − ��)678 �(0, 5) = 0 = �(5, 5)                      (31) 

where h=1, k=
��, 

solution: 

r=
��/=

��, now �(�, 0)=��(25 − ��), 

�(1, 0) = 1(25 − 1) = 24, �(2,0) = 4(25 − 4) = 84, �(3,0) = 144, �(4,0) = 144, 678�(5,0) = 0 also, �(0, 5) = �(5, 5) 

using Crank-Nicolson scheme (6) at i=1, j=0 we have 

2(1+
��)��,� -�� ��,�-

 �� �F,�= ��,F-
�� ��,F-

�� �F,F 

3��.�-0.5�F,�–0.5��,�=��,F+0.5��,F + 0.5�F,F 

3��,�-0.5��,�=66                               (32) 

Solving for 2≤ 4 ≤ 4  at j=0, using (6) we have set of 

equations and together with (32) forms a tri-diagonal matrix 

of the form 

N 3 −0.5 0 0−0.5 3 −0.5 00 −0.5 3 −0.50 0 −0.5 3 O PQQ
QR�1,1�2,1�3,1�4,1STT

TU = N 66168258216O 

Solving the matrix equation above gives ��,� = 35.5055, ��,� = 81.0328, �;,� = 114.6913, �I,� =91.1152 for the next step, we have at 1≤ 4 ≤ 4, for j=1 and 

using (6), gives a matrix equation of the form 

N 3 −0.5 0 0−0.5 3 −0.5 00 −0.5 3 −0.50 0 −0.5 3 O PQQ
QR�1,2�2,2�3,2�4,2STT

TU = N 76.0219156.1312200.7653148.4609O 

Solving the above matrix gives ��,� = 37.5544, ��,� =73.2828, �;,� = 89.8801, �I,� = 64.4670 and similarly for 

the next step at1 ≤i≤ 4 for j=2 gives a matrix equation with 

the following results ��,; = 35.3118, ��,; = 63.4794, �;,; =71.5643, �I,; = 48.3964 

Using Modified Crank-Nicolson scheme: 

Instead of starting with i=1 and j=0 we start at i=1, j=1 

therefore using (8) we have 

2(1+
��)��,�-

�� ��,� -�� �F,�=2(1 − ��)��,F+
�� ��,F+

�� �F,F 

3��.�-0.5�F,�–0.5��,� =��,F+0.5��,F + 0.5�F,F 

3��,�-0.5��,�=66 

On solving for i=2≤ 4 ≤ 4 and j=1 we get a system of 

matrix equation in the form 

N 3 −0.5 0 0−0.5 3 −0.5 00 −0.5 3 −0.50 0 −0.5 3 O PQQ
QR�1,1�2,1�3,1�4,1STT

TU
=N 66168258216O 

solving the matrix above gives ��,� = 35.5055, ��,� =81.0328, �;,� = 114.6913, �I,� = 91.1152 for the next step 

we have at 1≤ 4 ≤ 4  and j=2 gives the following matrix 

system 

N 3 −0.5 0 0−0.5 3 −0.5 00 −0.5 3 −0.50 0 −0.5 3 O PQQ
QR�1,2�2,2�3,2�4,2STT

TU = N 76.0219156.1312200.7653148.4609O 

on solving the above matrix we have the following results ��,� = 37.5544, ��,� = 73.2828, �;,� = 89.8801, �I,� =64.4670 which is the same results obtained using Crank-

Nicolson method for 1≤ 4 ≤ 4at j=1. For 1≤ 4 ≤ 4, at j=3 

we have the following solutions ��,; = 35.3118, ��,; =63.4794, �;,; = 71.5643, �I,; = 48.3964 which is the same 

results obtain with Crank-Nicolson method for 1≤ 4 ≤ 4 at 

j=2.  
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Example3: 

Solve the partial differential equation using modified 

Crank-Nicolson scheme: 

�/���/ = ����  0 ≤ � ≤ 1345ℎ �(�, 0) = 100V47:�678 �(0, 5) = 0 = �(1, 5)                           (33) 

Solution: 

Here, we use h=0.1 and k=0.004 then r=
��/=

�W < ��. Using 

(8), we have at 4=1, j=1 

2(1+
�W)��,�-

�W ��,�-
�W �F,�=2(1 − �W)��,F+

�W ��,F+
�W �F,F 

2.8��.�–0.4�F,�–0.4��,�=1.2��,F+0.4��,F + 0.4�F,F 

2.8��,�-0.4��,�=60.5934                        (34) 

at 4 =2, j=1we have 

2.8��.�–0.4�;,�–0.4��,�=1.2��,F+0.4�;,F + 0.4��,F 

2.8��,�-0.4�;,� − 0.4��,�=115.2556               (35) 

at4=3, j=1 

2.8�;,�-0.4�I,� − 0.4��,�=158.6357                 (36) 

at 4=4, j=1 

2.8�I,�-0.4�W,� − 0.4�;,�=186.4875                   (37) 

at 4=5, j=1 

2.8�W,�-0.4�Y,� − 0.4�I,�=196.0846                (38) 

at 4=6, j=1 

2.8�Y,�-0.4�Z,� − 0.4�W,�=186.4875                 (39) 

at 4=7, j=1 

2.8�Z,�-0.4�[,� − 0.4�Y,�=158.6357                (40) 

at 4=8, j=1 

2.8�[,�-0.4�\,� − 0.4�Z,�=115.2556                 (41) 

at 4=9, j=1 

2.8�\,� − 0.4�[,�=60.4934                                (42) 

Just as above, we have a matrix system represented as 

PQQ
QQQ
QQR

2.8 −0.4 0 0 0 0 0 0 0−0.4 2.8 −0.4 0 0 0 0 0 00 −0.4 2.8 −0.4 0 0 0 0 00 0 −0.4 2.8 −0.4 0 0 0 00 0 0 −0.4 2.8 −0.4 0 0 00 0 0 0 −0.4 2.8 −0.4 0 00 0 0 0 0 −0.4 2.8 −0.4 00 0 0 0 0 0 −0.4 2.8 −0.40 0 0 0 0 0 0 −0.4 2.8 STT
TTT
TTU

PQ
QQ
QQ
QQ
QR��,���,��;,��I,��W,��Y,��Z,��[,��\,�ST

TT
TT
TT
TU
 

=
PQQ
QQQ
QQ
R 60.5934115.2556158.6357186.4875196.0846186.4875158.6357115.255660.5934 STT

TTT
TT
U
 

which is atri-diagonal system. 

4. Discussion 

The modified Crank-Nicolson method from observation is 

fast and effective since, the value at 4=1, j=0 for Crank-

Nicolson method is the same at 4=1, j=1 will give using the 

modified Crank-Nicolson method, hence no need for 

computing at4=1, j=0 instead we start from4=1, j=1, which 

reduces computational stress and makes convergent faster 

than the former. 

5. Conclusion 

In this work, modified Crank-Nicolson method has been 

successfully compared with the classical Crank-Nicolson 

method by applying it to solve problems on parabolic partial 

differential equations (Heat conduction problems). We solved 

some numerical examples to illustrate how effective the scheme 

is by comparing it with the classical Crank-Nicolson scheme. In 

the process, it was discovered that the modified Crank-Nicolson 

scheme is efficient and reduces computational stress. 

We remark that, the modified Crank-Nicolson scheme is 

very quick, reliable, unconditionally stable and faster in 

application (without giving up accuracy) when compared 

with the other existing methods stated in the literature. 

 

References 

[1] C. E Abhulimen and B. J Omowo, Modified Crank-Nicolson 
Method for solving one dimensional Parabolic equations. 
IOSR Journal of Mathematics, Volume15, Issue 6 series 3 
(2019) pg 60-66. 

[2] J. Crank and N. Philis, A practical method for Numerical 
Evaluation of solution of partial differential equation of heat 
conduction type. Proc. Camb. Phil. Soc. 1 (1996), 50-57. 

[3] J. Cooper, Introduction to Partial differential Equation with 
Matlab, Boston, 1958. 

[4] E. C DuFort and S. P Franel, Conditions in Numerical 
Treatment of Partial differential equations. Math. Comput. 7 
(43) (1953) 135-152. 

[5] Emenogu George Ndubueze and Oko Nlia, Solutions of 
parabolic partial differential equations by finite difference 
methods. Journal of Applied Mathematics 8 (2), 2015, 88-102. 

[6] S. E Fadugba, O. H Edogbanya, S. C Zelibe, Crank-Nicolson 
method for solving parabolic partial differential equations. 
International Journal of Applied Mathematics and Modeling 
IJA2M, vol 1, (2013) nos 3pp 8-23. 



40 Omowo Babajide Johnson and Longe Idowu Oluwaseun:  Crank-Nicolson and Modified Crank-Nicolson  

Scheme for One Dimensional Parabolic Equation 

[7] A. Fallahzadeh and K. Shakibi, A method to solve 
Convection-diffusion equation based on homotopy analysis 
method. Journal of Interpolation and Approximation in 
scientific computing 1, (2015) pp1-8. 

[8] Febi Sanjaya and Sudi Mungkasi, A simple but accurate 
explicit finite difference method for Advection-diffusion 
equation, Journal of Phy, Conference series 909, (2017). 

[9] W. Gerald Recktennwald, Finite difference Approximation to 
the heat equation, Mathematical Method, 8 (34) 2004 pp747-
760. 

[10] H. A Isede, Several examples of Crank-Nicolson method for 
parabolic partial differential equations. Academia Journal of 
Scientific Research 1 (4) (2013), 06 3-068. 

[11] E. Kreyszig, Advanced Engineering Mathematics, USA, John 
Wiley and Sons, pp 861-865. 

[12] Neethu Fernandes and Rakhi B, An overview of Crank-
Nicolson method to solve parabolic partial differential 
equations. International Journal of Scientific Research, vol 7, 
issue 12, 1074-1086. 

[13] G. D Smith, Numerical Solution of Partial differential 
equations: Finite difference methods, Oxford Applied 
Mathematics and Computing science series, Oxford 
University press, Third edition, 1985. 

[14] Williams F. Ames, Numerical Methods for Partial differential 
Equations, Academic press, Inc, Third edition, 1992. 

 


