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Abstract: This work is aimed at numerically investigating the behavior of the Fermi energy in Strontium-doped Lanthanum 

Cuprate, using a numerical zero temperature elastic scattering cross-section procedure in the unitary collision regime. The main 

task is to vary the zero temperature superconducting energy gap from its zero value in the normal state, to the highest value of 60 

meV. We find that there are two different reduced phase space regimes for the first harmonic line node's order parameter. The first 

one, represented by a Fermi energy with a value of - 0.4 meV, where the rest of the material parameters, and the degrees of 

freedom of the normal to the superconducting phase transition are not sensitive to the self-consistent variation of the zero 

temperature superconducting energy gap. A different case is found when in the self-consistent numerical procedure, the Fermi 

energy takes a value of - 0.04 meV, indicating that the fermion-dressed quasiparticles have material parameters strongly sensitive 

to the numerical changes in the zero temperature gap, resulting in a reduced phase space, where the input and output zero 

superconducting energy values, and the degrees of freedom are separated by the self-consistent numerical analysis. The first 

scenario considers that when the Fermi energy and the nearest hopping terms have the same order of magnitude, the physics can 

be described by a picture given by nonequilibrium statistical mechanics. A second scenario indicates, that when the Fermi energy 

parameter and the hopping term have different order of magnitude; the physical picture tends to be related to the nonrelativistic 

quantum mechanical degrees of freedom coming from quasi-stationary quantum energy levels, with a damping term seen in the 

probability density distribution function, that is described in the configuration space. Henceforth, it is concluded that the use of 

the zero temperature elastic scattering cross-section links the phase and configuration spaces through the inverse scattering 

lifetime, and helps to clarify the role of the degrees of freedom in Strontium-doped Lanthanum Cuprate. Finally, we think that the 

self-consistent numerical procedure with the reduced phase space, induces nonlocality in the inverse scattering lifetime. 

Keywords: Strontium-Doped Lanthanum Cuprate, Reduce Phase Space, Configuration Space, Phase Space,  

Zero Temperature Elastic Scattering Cross-Section, Lifetime, Mean Free Path, Numerical Modelling 

 

1. Introduction 

The field of high-temperature superconductivity started 

with the discovery by Bednorz and Müller in 1986 of the 

ceramic composite known as Barium-doped Lanthanum 

Cuprate (BaLaCuO system) with a transition temperature (Tc) 

of 30 K [1]. Experimental doping was an initial feature to 

obtain superconducting transition samples in ceramics with 

copper-oxygen planes. In this direction a few months later it 

was found another compound, the Strontium-doped La2CuO4 

Cuprate with Tc near 40 K, and this system was called 

Strontium-Doped Lanthanum Cuprate (La2-xSrxCuO4) and 

abbreviated as LaSrCuO [2]. The group of materials 

discovered by Bednorz and Müller was called the LaCuO 

family, composed by two high temperature superconducting 

ceramics (HTSC): The BaLaCuO, and the LaSrCuO systems. 

In 1987, another discovery in HTSC was made by Wu and 

collaborators in the compound Yttrium Barium Copper 
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Oxide (YBa2Cu3O7-δ). Wu et al. observed experimentally a 

transition from normal to superconducting state (NS) 

approximately at Tc = 93 K, and it was called the YaBaCuO 

system [3]. Two features were inferred in 1986: First, the 

experimental HTSC values obtained for the Tc in all these 

families, suggested difficulties to explain their microscopic 

behavior using the Bardeen, Cooper, and Schrieffer theory of 

superconductors (BCS) [4]. Second, all compounds classified 

as HTSC had a common feature, they were anisotropic 

layered structures containing copper-oxygen (CuO2) planes 

[5-7]. 

The first experiments investigating the influence of 

impurities in HTSC showed that nonmagnetic disorder 

suppresses superconductivity [8] stronger than magnetic 

impurities, that destroy it in BCS superconductors [9]. 

Momono and Ido in 1994 performed an experimental work 

showing that the Strontium-doped Lanthanum Cuprate with 

increasing amounts of strontium doping (x) decreases the 

experimental value of Tc in the research [10]. Particularly, it 

was contrasted superconducting low specific heat data at 

constant pressure (cp) with the residual (N0) density of states 

(DOS) using the relationship for the specific heat jumps (γ ) 
with the relation 

� ��� 	~	�� ��� where NF is the DOS at the 

Fermi level. In 1995, Sun and Maki in their work [11] used 

the theoretical formalism of the Larkin equation [12] 

ln ��
��
 = � ���� − 	� ���+ ���  with ηc the pair breaking 

parameter, and Tc/Tc0 the dirty/clean superconducting critical 

temperature Tc. These works performed a fitting confirming 

that the experiments, suggested that Strontium-doped 

Lanthanum Cuprate is in the unitary elastic scattering regime 

[11]. This can be theoretically study using non-relativistic 

scattering theory as firstly suggested by Pethick and Pines in 

their research [13]. 

In the same order of experimental ideas, La2-xSrxCuO4 

possesses a robust structure with stronger bonds than other 

HTSC ceramics, allowing larger crystals to be grown, and 

neutron scattering experiments can probe the material’s 

magnetic structure with LSCO large bulk single-crystals [2]. 

Thus, another experiment worthy to mention here and related 

to the formalism of the ZTCS is the measurement of the 

universal limit for the electronic thermal conductivity (κ0). 

This experiment helped to clarify the unconventional nature 

of the LSCO family, and also to study the insulator and 

superconducting phases in the universal limit as a function of 

disorder. This was one of the first experiments that sketched 

the phase diagram of the LSCO family [14]. Although the 

plot of the universal superconducting electronic thermal 

conductivity in this material κ0s(x) does not resemble the 

measurements of an unconventional bulk superconductor 

crystal as function of temperature, the experimental 

measurement of the universal limit as function of doping, 

showed phases with different material´s behavior (figure 2 in 

the research [14]). 

It was found out that κ0n(x) (the normal state electronic 

thermal conductivity) is larger than κ0s(x) (the 

superconducting thermal conductivity) in the overdoped 

superconducting region [14], suggesting experimentally that 

in HTSC with a d-wave pairing, κ0n(x) should always be 

much larger than κ0s(x) in the superconducting state [15], 

thus remarking differences in the number of available 

quasiparticle heat carriers in these two phases. Hussey 

discussed several important experimental issues [16], such as, 

the Monomo et al. specific heat experiment [11] remarking 

that the downturn in cp(T) at low temperatures was resolved 

in their overdoped samples, indicating a large T
2
 term with a 

coefficient in agreement with a OP of a d-wave type. In 

addition, Hussey addressed an instructive discussion on the 

universal conductivity of several cuprates in the research [16], 

as the work by Sun and Maki [11], remarking that in their 

calculation, the universal κ0s(x) increases with doping. This 

variation in cuprates with a first order power in nimp, implies 

that the creation of quasiparticles by the pair breaking 

nonmagnetic mechanism [12] is more important than the 

shortening of the dressed quasiparticle mean free path l due 

to the impurity scattering. This issue is relevant to our work, 

since we make use of the inverse scattering lifetime as an 

output parameter. 

Hussey also discussed from an experimental point of view, 

the nodal dressed quasiparticle spectrum of a d-wave 

superconductor, and the effects of impurities in normal and 

superconducting metallic alloys within the self-consistent 

T-matrix approximation [16], where nonmagnetic impurity 

scattering plays a dominant role in the transport, and 

thermodynamic properties of several unconventional 

superconductors due to the presence of a gap with line nodes. 

Finally, it is worthy to mention a recent experimental work 

where a summary of several techniques, including the 

angle-resolved photoemission spectroscopy (ARPES) are 

given [17]. Yamase et al., addressed the Compton scattering 

experiment, and suggested that it might reveal the Fermi 

surface structure in the underdoped region in cuprates if 

ARPES information is added, since these two experimental 

techniques are compatible [17]. From the theoretical point of 

view, it is worthy to mention that the tight-binding 

framework has been used recently within the Hubbard model 

[18], since we also use a tight-binding approach but within 

the ZTCS formalism. Finally, Walker developed a theoretical 

proposal of the Fermi liquid effects for anisotropic HTSC in 

his work [19], and for Fermi and Bose trapped atomic gases 

at ultra-cold temperatures, the importance of the ZTCS has 

been discussed as well by Pitaevskii in his research [20]. 

This work is summarized as follows. Section 1, introduces 

some experimental works of interest for the compound 

Strontium-doped Lanthanum Cuprate that points towards a 

unitary scattering regime scenario within the ZTCS. Section 2, 

addresses briefly some points of the ZTCS formalism in 

unconventional superconductors. Thus, it is explained the use 

of a singlet 1
st
 harmonic OP with linear nodes including 

self-consistency, and the use of the Edwards nonmagnetic 

disorder scattering technique within a tight-binding (TB) 

framework, with the following parametrization: the zero 

temperature superconducting gap, the Fermi energy, the first 

neighbor’s interaction, the strength of the elastic scattering, 



 International Journal of Applied Mathematics and Theoretical Physics 2023; 9(1): 1-13 3 

 

and the concentration of nonmagnetic impurities. Section 3 is 

devoted to the study of the variation of the zero temperature 

superconducting gap (∆0) for La2-xSrxCuO4, contrasting some 

points with the values found for the compound Strontium 

Ruthenate [21]. 

Section 3 is considered the most important in this work 

and extensively discusses from a numerical perspective, two 

regions of importance for the Fermi averages, where the 

degrees of freedom of the dressed quasiparticles in the NS 

transition are separated depending on the value for the Fermi 

energy “εF”, and shows how the self-consistent procedure 

with the ZTCS finds in the reduced phase space (RPS) the 

NS transition, when the frequency window is sufficiently 

large. Namely, there are found different zero gaps, namely, 

∆0(input) and ∆0(output). Additionally, numerically the 

properties of τ-1
 with a nonlocal self-consistent character, and 

the minimum value of the imaginary part of the ZTCS is 

found to be positive for a line nodes OP, with a geometrical 

sharply peak, contrasting that the separation of the degrees of 

freedom has two different physical mechanisms. Section 4 

concludes, and section 5 outlines some recommendation for 

future works in this direction, comparing Strontium 

Ruthenate, and metallic normal thin films, with the layered 

behavior in Strontium-doped Lanthanum Cuprate. 

2. The Zero Temperature Elastic 

Scattering Cross-Section (ZTCS) 

2.1. The Role of the Inverse Self-Consistent Lifetime and 

the Mean Free Path in the Normal and 

Superconducting States 

In this subsection, we recall the role of two fundamental 

physical parameters used in non-equilibrium statistical 

mechanics [22-24], and their relation with the nonrelativistic 

ZTCS when studying the NS with nonlocality expressed by 

the self-consistent equation [25]: the inverse scattering 

lifetime (�-1), and the mean free path (l) which is the 

lattice constant parameter in the unitary collision regime. 

The function τ-1 is calculated for Strontium-doped 

Lanthanum Cuprate considering five parameters in the 

equation for the ZTCS, when there are used rationalized 

Planck units (h/2π = kB = c = 1). The ZTCS is given for the 

superconducting state by ω�(ω	 + �	0�) [26, 27]. 

ω�� !(ω	 + �	0�) = ω + �	"	Γ� $(%�)
�&�$&(%� ),       (1) 

with the inverse strength parameter ( = 	 ("	�� 	)�)*� where 

NF is the density of states at the Fermi surface and U0 is the 

strontium impurity potential. The parameter Γ� =
	+,-! ("�	��)�  is proportional to the impurity concentration 

nimp in its first power [28]. The function .(/�) characterizes 

the superconducting state, strongly depends on Edwards 

disorder [29], and has a functional form strongly attached to 

the Fermi surface average with .(/�) = 	 〈 ω�
1ω�&*∆&345,467	

〉 	�9, 

and where Δ3;< , ;=7 is the order parameter that contains the 

zero temperature energy gap (∆0). In the normal state, 

.(/�) = 1, and the elastic scattering cross-section is given 

according to [30]. 

ω��?@(ω	 + �	0�) = ω+ �	"	Γ� �
�&��.       (2) 

We are only interested in the unitary collision regime which 

applies if c << 1 and l a
-1

 ~ 1. Thus, (1) and (2) become 

respectively 

ω�� !(ω	 + �	0�) = ω + �	"	Γ� �
$(%� )		      (3) 

ω��?@(ω	 + �	0�) = ω+ �	"	Γ�        (4) 

The Fermi surface average 〈… 〉FS is performed in two limits 

of relevance for “ B3;< , ;=7 ” according a technique 

successfully used to fit experimental out of equilibrium data 

on the low temperature limit, i.e., the superconducting sound 

attenuation [31], the electronic thermal conductivity [32], and 

the electronic specific heat [33] of another unconventional 

superconductor with Strontium. 

The mean free path “l” does not have an equation in the 

unitary limit, and can be considered an input parameter, 

since the relationship that holds is l kF ~ l a
-1

 ~ 1, it means 

that the mean free path is equal to the lattice constant, and 

to the inverse kF
-1

 Fermi momentum (check Table 1). In this 

work, we consider only the unitary collision regime of the 

dressed fermion incoherent/coherent quasiparticles, with 

the level of impurity concentration denoted by the constant 

“Γ+
”, and in addition, (1), (2), (3) and (4), that are in 

agreement with the Larkin equation for nonmagnetic 

disorder [12], supporting the experimental evidences 

discussed in the introduction. A recent numerical work that 

uses in addition to the unitary, other two scattering regimes, 

i.e., the hydrodynamic limit with l > > a, and the intermedia 

regime, where l > a, for which the inverse lifetime has a 

different behavior is given in the research [34]. The 

parametrization used for disorder (c, Γ+
) follows the 

numerical procedure introduced in the works [34, 35]. 

In this model, Strontium-doped Lanthanum Cuprate OP, 

possesses a linear nodal structure [15, 36], and it is 

represented by a scalar point group states with an even 

function of k, and a parity i for the 1D irreducible 

representation B1g of the D4h point group. Table 1 summarizes 

the model used for computational purposes. The linear nodes 

of the 1D irreducible representation B1g show two features in 

the RPS: First, the nonlocality of � -1. Second, the 

differentiation of the problem in two regions with different 

degrees of freedom, following the Gibbs distribution in 

nonequilibrium statistical mechanics [37]. 
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Table 1. Shows relevant input information used for the extensive numerical simulation. 

Type of nodes Fermionic dispersion Order parameter Scattering lifetime Mean free path 

Line nodes intersecting the 

Fermi surface represented by 

4 pockets at the corners 

+/-(π,π) of the 1st BZ (figures 

2, 7) shadowed moccasin. 

B3;<, ;=7 � C� �
BD?!3;<, ;=7, depends on 

2 parameters: The Fermi 

energy value and the 
hopping function. 

Scalapino 1st harmonic line nodes 

model (figures 2 & 7) sketched in 
yellow color and with the singlet 

1D irrep basis 

E�;� � (FG�;< H� � (FG� ;= H�  

An output nonlocal self-consistent 

frequency dependent function & 5 
simulation parameters in the unitary 

regime: 

ℑ	I/�	�ω	 � �	0��J �
1
2�L� �/��ω�, ( � 0, M��  

l ~	a ~ constant 

is an input 
parameter 

 

We distinguish two equations where the imaginary ZTCS 

plays a fundamental role in nonequilibrium statistical 

mechanics following the Gibbs distribution in phase space 

[38], if the degrees of freedom of the physical system are 

taking into consideration. First, if the function ℑ	I/�	�ω	 �
�	0��J � 	 �2��*�  [39-40] is used to solve the τ - 
approximation Boltzmann equation of a normal metal in the 

phase space with variables (q,p) for the nonequilibrium 

distribution of the dressed fermionic quasiparticles, where 

follows that �NO NP� �QRSS � �	�*�	�O � O�� . If O�P�  goes 

rapidly to its equilibrium value O� and the inverse collision 

lifetime is approximated by a constant, such that 

�*� � 2	ℑ	I/��ω	 � �	0��J � 2	"	Γ� using (3-b). 

The other situation, where the degrees of freedom are 

inferred from the imaginary part of the ZTCS is given by the 

time dependent probability density distribution of the 

configuration space [41], i.e., T�P� � |�%�P�|� �
T�V

*�	W X� 	Y  with a wave function �%�P� that has an extra 

exponential imaginary damping "Γ" at the quasi-stationary 

level [42]. Thus, in this case T�  denotes an equilibrium 

situation, and if T�P� goes fast to its equilibrium value T�, 

we have that the following equation for T�P�  holds 

�NT�P�
NP� �[\] � �	2	ℑ	I/��ω	 � �	0��J	T�P�. 

In both situations, the type of nonlocality, and the degrees of 

freedom come within in the inverse scattering lifetime 

described by collisions “coll” or a quasi-stationary damping 

“qsd” in the first partial derivatives with respect to time in the 

previous expressions. The imaginary function ℑ	I/��ω	 �
�	0��J	 expresses nonlocality, if the irreducible 

representation B1g with even parity follows an interplay 

between onsite and hopping terms in the Fermi average. It can 

be seen from the visualization of the RPS, and from the union 

of the phase space in nonequilibrium statistical mechanics, 

with the configuration space in nonrelativistic quantum 

mechanics (see figure 1 for an infographic summary of this 

section). Furthermore, since ℑ	I/��ω	 � �	0��J at Tc is always 

positive for all real input frequencies, and changes the sign of 

the slope in the imaginary self-consistent part at the point 

where the NS transition happens, it has a peculiar geometrical 

shape for singlet scalar pairing states, and never comes close 

to zero, contrasting with the case of strontium ruthenate which 

possesses triplet odd pairing, and has a small tiny gap [43] for 

the quasinodal case [21], within the TB disorder framework 

[44]. 

 

Figure 1. Infographic path of the degrees of freedom in Strontium-doped Lanthanum Cuprate with an insert of the inverse lifetime for the εF = -0.4 meV case. 

This type of analysis was pointed out firstly in the work [37], 

where it was stated that not the entire microscopic motion of a 

physical system in statistical mechanics that follows Gibbs’s 

distribution, the motion of the quasiparticles is quasi-classical, 

and happens only for some degrees of freedom. However, for 

the rest of degrees of freedom, the motion is quantized, and the 

energy containing those degrees of freedom can be written as 

function of energy with a quantum number n, i.e., “En (q, p)”, 
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that in our case corresponds to the description using the 

time-dependent probability density distribution with a 

negative damping given by � � �ℑ	I/��ω	 � �	0�)J [38] and 

represents a classical window to quantum phenomena [45], 

but in this case, comes from the configuration space in 

nonrelativistic quantum mechanics [41]. 

2.2. The Role of the Fermionic Dressed Quasiparticles 

The Fermi-Dirac distribution describes the behavior of the 

quasiparticles on the quasi-stationary quantum energy levels 

[25] (εn and where n = 0,1,2…) with O� =	 (V*
^_`^a
bc	d + 1)*�. 

Therefore, it is important to recall that the Fermi energy εF, 
enters as a parameter in the Fermi-Dirac distribution fn. It can be 

numerically controlled when the Fermi averages 〈… 〉FS are 

performed. In addition, the consequence of increasing the 

number of dressed negative fermion quasiparticles in the 

system results in an increase of the Fermi energy from negative 

to positive values [46]. Furthermore, in the doped ceramic 

La2-xSrxCuO4, the NS transition depends on both the 

concentration of doped ions, and the number of CuO2 layers 

with a reservoir of fermionic quasiparticles with negative Fermi 

energy values. Check figure 2 (b) in the research [7], where it 

has been proposed that the partial substitution of Strontium for 

Lanthanum in a solid solution of La2-xSrxCuO4, obeys a 

manipulation of the charge reservoir, i.e., the change of one 

electron per copper site, making the copper valence higher than 

Cu
+2

, and inducing unconventional superconductivity. Cava, 

also points out that in the antiferromagnetic phase with the 

insulator La2CuO4, the Cu
+2

 “½” spin ions (with one unpaired 

electron per copper) are located in the dx2-y2 atomic orbitals [7]. 

In order to show the link with the degrees of freedom 

mechanism and nonlocality in this case, small colored 

insertion in figure 1 shows the behavior of the function 

ℑ	I/�(ω	 + �	0�)J  as function of / = ℜ	I/�(ω	 + �	0�)J 
with parameters: ω = ∆0 = 33.9 meV, εF = - 0.4 meV, c = 0, t = - 

0.2 meV and Γ+ 
= (0.005, 0.01, 0.05, 0.10, 0.15, 0.20) meV, 

indicating an impurity concentration varying from very dilute 

disorder with Γ+= 0.005 meV, forming a robust coalescent 

metallic phase with constant scattering lifetime; to an optimal 

disorder phase with very incoherent fermionic quasiparticles 

in both normal, and superconducting states. Remarkably, 

figure 1, shows for the range of doping Γ+= 0.05 - 0.20 meV a 

noticeable sharp peak with the same geometrical shape, 

with a change in slope in the imaginary ZTSC around the 

real frequency value of ω = 33.9 meV = ∆0; that can be 

attributed to the change in the type of degrees of freedom at 

the NS phase transition. 

The ZTCS for Strontium-doped Lanthanum Cuprate is 

more difficult to simulate than for Strontium Ruthenate (∆0 = 1 

meV), because the real frequency window should suffix to 

locate NS transition point; and in addition; we cannot extend 

this procedure to the antiferromagnetic phase. This is due to 

the existence of gap values that strongly depend on Edwards 

type of disorder [29], and the numerical calculation depends 

on the Fermi energy, with real frequencies in a different range, 

needed to describe the RPS behavior, and the types of degrees 

of freedom. In the normal, and superconducting states, the 

degrees of freedoms change in nature since superconducting 

pair excitations appear, although not equally in 

Strontium-doped Lanthanum Cuprate, and Strontium 

Ruthenate [47, 48]. We know, as suggested in the previous 

subsection, that self-consistency is unavoidable, and a good 

dispersion relation for the reduced phase space is given by 

/	�3/�(ω)7	~	1  with /	~	1 �� 	∼ 	4	Δ� . This suggest a 

frequency window of ± 120 meV to find the NS transition for 

Strontium-doped Lanthanum Cuprate, as we are able to predict 

numerically in section 3. 

2.3. Pairing Singlet Scalar States from the 1D Irreducible 

Representation B1g of the Point Group D4h 

We use for simulation (check Table 1) the 1D irrep. B1g for 

the tetragonal point group D4h, in a square lattice with the 1
st
 

harmonic given by E3;<, ;=7 = (FG(;< H) − (FG( ;= H) 
which has an even parity E3;< , ;=7 = E3−;<, −;=7 [15, 

36]. The OP is a scalar function, that has dependence of the 

zero temperature gap (∆0) near the line nodes, and is given by 

i3;< , ;=7 = i�	E3;< , ;=7 = 	i�I(FG(;< H) − cos	( ;= H)J.  

However in the literature is also found the value ∆0/2 for the 

function i3;<, ;=7 [49], so we would like to clarify this 

point before presenting the numerical results. 

Yoshida et al., performed detailed angle-resolved 

photoemission spectroscopy experiments (ARPES) in several 

cuprates including Strontium-doped Lanthanum Cuprate [49]. 

They were able to explain the difference between two 

magnitudes: the gap near the nodes (∆0) and the antinodal 

gap (∆*). They pointed out that ∆* is approximately 

independent, if doping is fixed for the material parameters. 

Nevertheless, Yoshida et al. suggested that ∆0 strongly 

depends on the material properties such as doping, and is 

able to track the magnitude of Tc
max

. Henceforth, we are able 

to show in the next section, that using the ZTCS, we can 

track as well the zero superconducting gap behavior 

numerically, differentiating two regimes. One where dressed 

holes dominate the physics with εF negative, and far from the 

zero value. The other case represents an increase of the 

amount of fermionic electrons, and εF closer to the zero value. 

In addition, it is important to mention that figure 3 in the work 

[49] shows what Yoshida et al. called, the leading edge 

midpoints gap (LEM) with ∆LEM = ∆0/2. 

3. Numerical Behavior of the Zero 

Temperature Superconducting Gap 

3.1. General Considerations 

The determination of the crossover between the normal, and 

superconducting phases (NS) in HTSC cuprates including the 

ceramic Strontium-doped Lanthanum Cuprate is still one of 

the main task, from the experimental, theoretical and 

numerical points of view. It continues to be a matter of an 

intense debate, despite this compound is one among the first 

discovered cuprates. The experimental presence of fermion 

incoherent carriers in its transport properties for different 
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doping levels, and the localization of the NS transition 

temperature using angle-resolved photoemission spectroscopy 

experiments, help to clarify several points, such as, the 

presence of different types of superconducting gaps [49]. We 

think that to accomplish a unique theory to describe the whole 

phase diagram in cuprates is quite difficult because studying 

the ZTSC, we have observed how disorder (nonmagnetic dirt) 

numerically affects, the 2D coherence of dressed fermionic 

quasiparticles in each single layer, when five parameters are 

considered within a tight-binding self-consistent framework. 

Thus, the results presented in the next subsections, aim at 

clarifying this point, from a numerical perspective. 

We have noticed, that using the ZTSC formalism in the 

unitary regime, there are not small parameters in the solution 

of the self-consistent scattering lifetime for an OP with linear 

nodes. The minimum observed at the NS transition is finite 

and greater than cero, preserving its geometrical shape in all 

cases, except for a small positive value when the formalism 

with a very dilute doping is numerically solved, as seen in the 

insert of figure 1 (Γ+
 = 0.005 meV). Disorder only enters in 

first power of nimp in the self-consistent ZTSC formalism [28]. 

Thus, we clarify this point checking the numerical robustness, 

with a well-established numerical self-consistent ZTSC 

procedure already tested by us in several cases of relevance. 

Furthermore, we have observed two different physical 

behaviors when solving this numerical problem. One when the 

parameter that represents the Fermi energy is εF = - 0.4 meV; 

and another behavior, when εF = - 0.04 meV. Henceforth, we 

proceed to vary the value of the zero superconducting energy 

gap for two values of the Fermi energy, and to observe, how 

the crossover of the NS transition occurs. 

3.2. Zero Superconducting Gap Variation of the Scattering 

Cross-Section for Curved Pockets 

The 1
st
 simulation (sim) performed in this subsection, refers 

to a set of parameters corresponding to the nearest neighbor 

TB expression for a single band centered at the corners (±π/a, 

±π/a) of the 1
st
 Brillouin 2D zone (figure 2), with a dispersion 

relation B3;< , ;=7 � C� �	BD?!�;< , ;=�  where the 

quasi-momentum hopping dependent part of the dispersion is 

given by BD?!3;< , ;=7 � 2	P	ncos�;< H� � cos	� ;= H�o, it is 

an even function BD?!3;< , ;=7 � 	 BD?!3�;<, �;=7  of the 

quasi-momentum, and the numerical values of the 

tight-binding parameters are chosen as �P, C�� = (- 0.2,- 0.4) 

meV with the zero gap given by the yellow crossing lines 

(figure 1). 

Figure 2 shows the implicit sketch for the expression, 

0 � �	0.4 � BD?!�;< , ;=�, and the numerical values given in 

the previous paragraph. The pockets shadowed moccasin 

color are centered symmetrically at points p3;<, ;=7 �
p�", "�. The shape of the pockets situated in the corner are 

part of a circle. The yellow crossing lines represent the 

implicit sketch of the linear OP nodes, for the 1D irrep B1g. 

The scattering strength is the unitary collision limit with c = 

0. The doping Γ+
 is a discrete variable of two values. One 

represents a diluted doping Γ+
 = 0.05 meV, and the second 

simulates optimal doping value with Γ+
 = 0.20 meV, already 

tested for a small frequency window, for three scattering 

regimes [34]. Using these parameters, we vary, the value of 

the zero temperature energy gap in the imaginary part of the 

ZTCS in (3a) and (3b). We use four values, namely, the cero 

value for the normal state and three values for the 

superconducting phase. In the first simulation shown in figure 

3, we used the values ∆0 = (0.0, 20.0, 33.90, 60) meV with a 

dilute doping dependence Γ+
 = 0.05 meV and �P, C�� = (- 

0.2,- 0.4) meV. 

 

Figure 2. Implicit fermionic dispersion (shadowed moccasin) and bosonic 

excitation pairs (shadowed yellow) for εF = -0.4 meV. 

The value ∆0 = 0.0 meV indicates the normal state and it is 

given by (3b). The values ∆0 = (20.0, 33.90, 60.0) meV show 

the superconducting state behavior of the imaginary part of 

the ZTCS given by (3a). The diluted doping Γ+
 = 0.05 meV 

has a resemblance of a coalescent metallic phase in 

Strontium-doped Lanthanum. The results of the simulation 

using a frequency window with limiting values at real 

frequency points equal to p	80.0	rVs  in the RPS, are 

shown in figure 3. 

These results indicate that the input zero superconducting 

energy gap parameter for the four values has the following 

characteristics in the RPS: 

1) The unitary peak in the imaginary function is increased 

with the input of higher values of ∆0  from the constant 

value of 0.16 meV in the normal state to almost 1.75 

meV for the maximum ∆0 = 60.00 meV. 

2) The normal state of Strontium-doped Lanthanum 

Cuprate has a cero slope line, indicating a constant 

imaginary value, and therefore a constant unitary 

scattering lifetime, when the doping is fixed. Its 

value is approximately 0.16 meV, and it agrees with 

(3b). 

3) The transition from the normal to the superconducting 

phase (NS) remains fixed as having the same input and 

output values for the zero energy superconducting gap 

∆0 = (20.0, 33.90, 60.0/60.01) meV, when the Fermi 

energy parameter is εF = - 0.4 meV. Thus, in this case ∆0, 

and also, the degrees of freedom are not sensitive to the 

material parameters. 
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4) The minimum in the imaginary part of the reduced 

phase space, i.e., the function ℑ	I/��ω	 � �	0��J  has 

two features: 

a) First, an almost equal finite value for the zero energy 

superconducting gap values equal to (20.0, 33.90, 

60.0) meV is given respectively by the values (0.06, 

0.06, 0.05) meV. 

b) Second, there is a sharp minimum with a similar 

geometrical shape at the three NS points. 

 

Figure 3. 1st RPS simulation with a Fermi energy εF = -0.4 meV for 4 

superconducting gap values & diluted doping in a ±80 meV frequencies 

range. 

If the 2
nd

 sim is performed, with real frequencies in an 

interval [-100, +100] meV, the plots are shown in figure 4, 

and indicate that a bigger real part of the reduced phase 

space, / � eI/��ω	 � �	0��J, but it does not introduce new 

results. 

 

Figure 4. 2nd RPS simulation with a Fermi energy εF = -0.4 meV for 4 

superconducting gap values & diluted doping in a ±100 meV frequencies range. 

Subsequently, we perform the 3
rd

 simulation in the RPS 

with an optimal impurity concentration value, i.e., Γ+
 = 0.20 

meV. The graphical results are shown in figure 5. 

 

Figure 5. 3rd RPS simulation with a Fermi energy εF = -0.4 meV for 4 

superconducting gap values & optimal doping in a ±80 meV frequencies 

range. 

The results from figure 5 indicate that, the input zero 

superconducting energy gap parameter for the three values, 

has almost the same output value (all gap values decrease for 

less than 1 %). However, new characteristics in the reduced 

face space, compared to figure 3 are encountered: 

1) The unitary peak in the imaginary function is 

increased with higher values of the 

∆0 superconducting parameter from 0.63 meV in the 

normal state to almost 3.80 meV for 

∆0(output) = 59.95 meV. So, it represents a smaller 

scattering lifetime than for the case with a dilute 

amount of impurities, i.e., dressed quasiparticles 

scatter with more frequency, due to an optimal 

doping. 

2) The normal state is a zero slope line, indicating a 

constant imaginary value, and therefore, a constant 

inverse unitary scattering lifetime, when the doping is 

fixed. Its value, now is increased with respect to the 

diluted doping case, and is 0.63 meV. The same 

situation happens in the superconducting phase. 

Therefore, normal incoherent dressed states scatter with 

more frequency. 

3) The NS transition remains almost fixed at the same 

input values for the zero energy superconducting gap, 

with ∆0 (output) = (19.90, 33.81, 59.95) meV, when the 

Fermi energy εF = - 0.4 meV, pointing towards a 

superconducting gap simulation independent of the 

material parameters. 

4) The minimum in the imaginary function has almost the 

same finite value for the zero energy gap, and it is given 

accordingly to (0.29, 0.26, 0.24) meV, indicating a very 

small decreasing. 

Let us, for illustrative purposes, perform an identical 

material parameters 4
th

 sim opening the RPS real frequency 

window to an interval of p	100.0	rVs. The plots are shown 

in figure 6, and clearly show that they do not introduce new 

numerical results, with respect to figure 5. 
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Figure 6. 4thRPS simulation with a Fermi energy εF = -0.4 meV for 4 

superconducting gap values & optimal doping in a ±100 meV frequencies 

range. 

Henceforth, the main numerical results from section 3.2 are 

summarized as follows: The position in the reduced phase 

space from the normal to the superconducting transition (NS) 

remains almost at the same zero temperature energy gap input 

value (within a numerical difference rounding 1% between 

input and output values), and therefore, it is easier to 

determine the real frequency needed for the self-consistent 

simulation. This happen only for values of the Fermi energy, 

where hold the following conditions: The absolute Fermi 

energy value |εF| ≈ 2 |t|, and the εF value, it is found to be 

negative, and geometrically happens for circular shapes at the 

four corners of the 1
st
 Brillouin zone. 

It is seen from the simulation, that when the study is 

performed, the NS transition, and thus, the ∆0 value in the RPS 

does not depend on the material parameters, and there is a 

single frequency point, where the degrees of freedom are 

separated into two groups: Those of the nonequilibrium 

statistical mechanics phase space, corresponding to the normal 

state, and the ones from the configuration space of 

nonrelativistic quantum mechanics corresponding to the 

superconducting phase, remaining, the zero gap input and 

output values, within 1% of numerical difference if εF = -0.4 

meV. This case corresponds to the infographic chart given by 

figure 1, and its reduced phase space insert in the left upper 

side. 

3.3. Zero Superconducting Gap Variation of the Scattering 

Cross-Section for Quasi-Flat Pockets 

The simulation performed in this subsection, refers to a set 

of nearest neighbor parameters for a single band with almost 

flat sheets centered at the corners (±π/a, ±π/a) of the 1
st
 

Brillouin 2D cell, shadowed moccasin color in figure 7, and 

with an identical expression, as for the quasi-circular pockets 

case, i.e., B3;< , ;=7 � C� � BD?!3;<, ;=7,  where the 

hopping term is 2P	ncos�;< H� � cos	� ;= H�o, but now the 

numerical values of the TB parameters are the following ones: 

We keep the same hopping coefficient t = -0.2 meV, but vary 

the independent Fermi energy coefficient, to be near the zero 

value, i.e., εF = -0.04 meV. This almost represent, the 

electron-hole symmetry case, and it is found, nearby the 

half-filling ground state, where interatomic quantum 

mechanical hopping is the dominant physical mechanism. 

The implicit plot given according to 0	 � �0.04 �
BD?!�;< , ;=�  being C� � �0.04  meV (|εF| << 2 |t|) 

resembles a geometrical ongoing transition to the half-filled 

antiferromagnetic ground state, and a geometrical flattening 

of the four circular pockets, centered symmetrically at points 

p3;<, ;=7 � p�", "). The main signature in the dispersion 

B�;<, ;=�  is that for C� � �0.04  meV, the dominant 

behavior comes from the quantum mechanical nearest 

hopping term BD?!3;<, ;=7, closer to the insulator La2CuO4, 

as can be seen from figure 7. If C� → p0 meV the four 

pockets will be joined together as four straight lines at the 

symmetric points p3;<, ;=7 � p�"/2, "/2). 

In such a hypothetical case, the average over the Fermi 

surface converts the 2D integration in (3a) into a line integral, 

and complicates the numerical procedure. Therefore, the value 

C� � �0.04 meV suffixes our duty, allowing numerically, to 

compute a new behavior of the imaginary ZTCS. 

Additionally, the yellow lines represent, the implicit sketch of 

the linear OP nodes, i.e., Δ3kw, kx7 � 0. 

 

Figure 7. Implicit fermionic dispersion (shadowed moccasin) and bosonic 

excitation pairs (shadowed yellow) for εF = -0.04 meV. 

If the Fermi energy is C� � �0.04 meV, the scattering 

strength used for the new simulation is given by the same 

expression in the unitary scattering limit (c = 0). The doping 

Γ+
 in this subsection has the same previous two values. A 

diluted doping Γ+
 = 0.05 meV, and an optimal doping value 

Γ+
 = 0.20 meV. Using these parameters, we change the values 

of the zero temperature energy gap in the imaginary part of the 

ZTCS within same range. The value ∆0 = 0.0 meV, indicates 

the normal state given by (3b). The input zero gap values are 

the same four, i.e., ∆0 = (20.0, 33.90, 60.0) meV. 

The results of the 5
th

 self-consistent sim, using a real 

frequency window between p	80.0	rVs  are shown in 

figure 8. In order to analyze the new behavior, let us check, 

the green plot for ∆0 = 60.00 meV. The NS transition 

frequency point disappeared from the plot. There is not a 

sharply minimum indicating the separation of the degrees of 

freedom for the highest value of the gap. 
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Henceforth, figure 8 should be contrasted with figure 3 

with the same value of the diluted doping parameter. We just 

have encountered a new remarkable numerical property of 

the self-consistent solution. The zero temperature 

superconducting energy gap values obtained as output values 

in the numerical self-consistent procedure are strongly 

distorted from the original input ∆0 values, accordingly to the 

following table: 

Table 2. Partial filled table of the changes in ∆ο (Input) & ∆ο (Output)  for εF = -0.04 meV & dilute doping Γ+= 0.05 meV.  

Zero sup. energy gap with 

dilute doping (Γ+= 0.05 meV 
∆0  normal state (meV) ∆0  sup. state (meV) ∆0  sup. state (meV) ∆0  sup. state (meV) 

Input values 0.00 ± 20.00 ± 33.90 ± 60.00 

Output values 0.00 ± 38.00 ± 64.40 It is not shown 

|∆ο (Output) − ∆ο (Input)| 0.00 18.00 30.50 --- 

 

 

Figure 8. 5th RPS simulation with a Fermi energy εF = -0.04 meV for 4 

superconducting gap values & diluted doping in a ±80.00 meV frequencies 

range. 

Therefore, we see from figure 8, and table 2, that for a 

dilute doping of Γ+
 = 0.05 meV, there are strong differences 

between the input and output zero temperature gap values, 

and the value | ∆ο (Output) - ∆ο (Input) | is a nonzero value. 

This suggest that for the case when the Fermi energy is closer 

to zero, the zero energy gap is very sensitive. 

This parameter distortion, additionally suggests, that the 

hopping term (it has an interatomic site character, probably 

with ions interaction) is dominant for an almost symmetric 

dispersion, when the area shadowed moccasin color increases, 

and changes the shape of the Fermi surface to an almost flat 

line, intercepting the 1
st
 Brillouin zone closer to the 

symmetry points given by p3;< , ;=7 � p�"/2, "/2). On the 

other hand, from the numerical point of view, if C� → p0 

meV, the calculation of the Fermi average of the ZTCS, 

becomes a numerical challenge, and the family of 

self-consistent solutions in the RPS are difficult to obtain 

using a self-consistent procedure based on a Fermi average 

integration, so a description of the insulator state in La2CuO4, 
we consider that is not possible within this numerical 

framework. 

If the 6
th

 simulation is performed using same material 

parameters in an interval I�400.00, �400.00J  meV, the 

results are shown in figure 9, and clearly, we see the four 

output ∆0 values, with a dilute coalescent doping Γ+
 = 0.05 

meV, remarkably showing the evolution of the zero energy 

superconducting gap starting from the normal state. 

 

Figure 9. 6th RPS simulation with a Fermi energy εF = -0.04 meV for 4 

superconducting gap values & diluted doping in a ±400.00 meV frequencies 

range. 

Therefore, all output ∆0 values for dilute doping are given 

in table 3. It shows numerically, how the zero energy 

superconducting gap values are displaced for an almost zero 

Fermi energy parameter (an order of magnitude smaller 

compared to the case given in figures 3-6). Of course, the 

numerical calculation does not indicate what ∆0 

experimentally values for La2-xSrxCuO4 are the most 

appropriate. But the reduced phase space procedure using the 

self-consistent elastic scattering cross-section, remarkably 

shows for what material parameters, the value of ∆0 and 

therefore, the values of the transition temperature, to the 

superconducting state are sensible to the rest of the material 

parameters. 

In another order of ideas, the self-consistent reduced phase 

space, using the set of five simulation parameters (εF, t, ∆0, 

Γ+
, c) is able to answer when the degrees of freedom given 

by the phase space in nonequilibrium statistical mechanics, 

and the configuration space in nonrelativistic quantum 

mechanics are more sensitive to material parameters in the 

case of having nonmagnetic doping with strontium in the NS 

phase transitions, as we have numerically demonstrated in 

this work. The physics corresponds to a quantum mechanical 

quasi stationary level case, and remains hidden in the Gibbs 

distribution [37]. 
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Table 3. Filled table of the changes in ∆ο (Input) & ∆ο (Output)  for εF = -0.04 meV & dilute doping Γ+= 0.05 meV. 

Zero sup. energy gap with 

dilute doping (Γ+= 0.05 meV) 
Normal state (meV) ∆0  sup. state (meV) ∆0  sup. state (meV) ∆0  sup. state (meV) 

Input values 0.00 ± 20.00 ± 33.90 ± 60.00 

Output values 0.00 ± 38.00 ± 64.40 ± 114.00 

| ∆ο (Output) − ∆ο (Input) | 0.00 18.00 30.50 54.00 

 

Other similitudes and differences, noticeable from figures 

3 and 7-8 with dilute doping are the following: 

1) The unitary peak in the imaginary function is increased 

for higher values of the ∆0, from 0.16 meV in the 

normal state to 2.61 meV for the maximum gap, i.e., 

∆0 = 60.0 meV, and C� � �0.04 meV. This shows that 

in the case, when the Fermi energy is closer to a cero 

value, the scattering lifetime is smaller than when 

C� � �0.4 meV for a dilute doping (Γ+
 = 0.05 meV). 

2) The normal state in the reduced phase space is 

represented by a cero slope line, as in the previous case, 

and the imaginary elastic scattering term has a constant 

value of 0.16 meV, so C� does no change the normal 

state unitary lifetime. 

3) The minimum in the imaginary part of the reduced phase 

space has almost the same finite value for the new zero 

energy gap ∆0 (output)= (38.00, 64.40, 114.00) meV, and 

it is given approximately by the value ℑ	I/��ω	 � �	0��J 
= 0.04 meV (it is almost the same value obtained from 

figure 3). 

We continue with a 7
th

 simulation, changing the impurity 

concentration value to an optimal doping of Γ+
 = 0.20 meV. 

The sim is performed with the same set of input values 

∆0(input) = (20.0, 33.90, 60.0) meV, and the graphical results 

in the RPS are shown in figure 10, for a real frequency 

window ω = ��80.00, �80.00� meV. 

 

Figure 10. 7th RPS simulation with a Fermi energy εF = -0.04 meV for 4 

superconducting gap values & diluted doping in a ±80.00 meV frequency range. 

The plot in figure 10 should be compared with the plot 

given in figure 5. We see that the same effect of distorted 

values of the zero temperature gap, numerically appears for 

the ∆0(output). Additionally, as in the previous dilute doping 

case, in the plot for the value ∆0 = 60.00 meV, the NS 

transition is out of the frequency range, that is used in the 7
th

 

simulation. Since in this case, there are more fermionic 

dressed negative electrons than positive holes [25], and a 

Fermi energy of εF = -0.04 meV, the scattering lifetime, 

which is inversely proportional to the imaginary part of the 

ZTCS is �2��*�~	5.5 meV, and τ becomes smaller that for 

the case of an almost circular pocket Fermi surface. We think 

that more dressed electrons are elastic scattered due to a 

higher amount of doping (Γ+
 = 0.20 meV), and this is, mainly 

due to the change in behavior of the Fermi-Dirac fn 

distribution function, as was noticed in section 2 [46], 

increasing the number of dressed negative fermion 

quasiparticles (electrons) in the system when the Fermi 

energy changes from negative to positive values, i.e., within 

the interval -0.4 meV ≤ εF ≤ -0.04 meV. 

 

Figure 11. 8th RPS simulation with a Fermi energy εF = -0.04 meV for 4 

superconducting gap values & optimal doping in a ±400.00 meV frequency 

range. 

The final plot comes from the 8
th

 simulation performed 

using identical material parameters, and a real frequency in 

the interval I�400.00, �400.00J  meV. The results are 

shown in figure 11, where the output numerical values for the 

zero superconducting gap ∆0 are obtained from the data of 

the corresponding plots, and a new Table can be filled out, 

with new output microscopic gap parameters. 

In accordance with the previous statement, all output zero 

energy superconducting ∆0 values are given in table 4. Figure 

11 shows, how the zero energy superconducting gap values 

are displaced from input values, when it is used an small 

amount of the Fermi energy (C� � �0.04  meV) for an 

optimal fixed doping value. The reduced phase space elastic 

cross-section procedure differentiates in this case, the 

material parameters needed to find the correct position of ∆0 

values, and again, we think that for optimal doping, the 

values of Tc are quite sensitive to the rest of the input 

material parameters, depending on the different quasiparticle 

types of degrees of freedom. 
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Table 4. Filled table of the changes in ∆ο (Input) & ∆ο (Output)  for εF = -0.04 meV & optimal doping Γ+= 0.20 meV. 

Zero sup. energy gap with 

dilute doping (Γ+= 0.05 meV) 
Normal state (meV) ∆0  sup. state (meV) ∆0  sup. state (meV) ∆0  sup. state (meV) 

Input values 0.00 ± 20.00 ± 33.90 ± 60.00 

Output values 0.00 ± 37.90 ± 64.30 ± 113.90 

|∆ο (Output) − ∆ο (Input)| 0.00 17.90 30.40 53.90 

 

Other differences noticeable from figures 5, and 10-11, at 

optimal doping are the following: 

1) The unitary peak in the imaginary function is increased 

with higher values of ∆0, from a normal state imaginary 

output of 0.63 meV to 5.60 meV for ∆0 (output) =  64.0 

meV and εF = -0.04 meV. This shows, that in the case 

when the Fermi energies are closer to a cero value, the 

scattering lifetime is smaller than when εF = -0.4 meV 

for an optimal doping (Γ+
 = 0.20 meV). 

2) The normal state is a zero slope line as in the previous 

case, and the imaginary elastic scattering term has a 

value of 0.63 meV, indicating that in the unitary limit, 

optimal doping, gives the same constant lifetime as for 

dilute doping, and εF = -0.04 meV. 

3) The minimum in the imaginary part of the RPS has 

almost the same finite value for the ∆0 (output) = (38.00, 

64.40, 114.00) meV, and it is given by the values: 

ℑ	I/��ω	 � �	0�)J = (0.20, 0.19, 0.17) meV. 

4. Conclusions 

The present work was aimed at numerically investigating 

the behavior of the Fermi energy parameter (εF) in a singlet 2D 

layer of Strontium-doped Lanthanum Cuprate, using a 

self-consistent numerical zero temperature elastic scattering 

cross-section procedure in the unitary collision regime, 

varying the values of the zero temperature superconducting 

energy gap (∆0). We found that there are two different reduced 

phase space tight-binding regimes: 

1) One picture, where εF = -0.4 meV indicates an 

asymmetric dressed quasiparticles scenario (holes), 

where material parameters and degrees of freedom of 

the NS transition are no sensitive to the numerical 

change on the microscopic parameter ∆0 in the unitary 

limit with a constant mean free path z ∼ H . This 

scenario considers that the physical mechanism is 

induced by the parameters (t, εF), that have the same 

order of magnitude. 

2) A different picture, where εF = -0.04 meV indicates a 

dressed electron almost symmetric quasiparticles 

scenario, and where the material parameters are 

strongly sensitive to the numerical change of ∆0 and the 

degrees of freedom. The unitary limit with z ∼ H still 

prevails. The 2
nd

 picture considers that the physical 

mechanism is induced by the small value of the Fermi 

energy parameter εF = -0.04 meV with |t| > |εF|, and this 

picture tends to be related to the hopping nonrelativistic 

quantum mechanical degrees of freedom at the 

quasi-stationary quantum mechanical level. 

3) We think that self-consistent nonlocality is an intrinsic 

property of the reduced phase space, where holds that 

/	�(/�)	~	1, and that in order to check for the εF scenario 

that takes place, we need also to consider in the reduce 

phase space, real frequencies of the order of /	~	4	Δ�. 

To compare with other works, nonlocality can be also 

found for the mean free path “z” in thin metallic films 

when considering the anomalous skin effect, using Fermi 

averages for complicated Fermi surfaces. Theoretical 

details for the mean free path within the anomalous skin 

effect, can be found in the works [50, 51], and recent 

experiments are given in the articles [52-54]. 

The numerical parameter εF is defined in several ways. If it 

is considered a nonrelativistic quantum mechanics study in the 

configuration space, with the fermionic quasiparticles 

dispersion B(;<, ;=) = C� + BD?!(;<, ;=) , the parameter εF 

establishes the onside interaction inside the same atomic 

orbital. If BD?!(;<, ;=) term is added, then the coefficient “t” 

says about transition metals behavior that is more complicated. 

If both terms are included in order to perform the Fermi 

average of the ZTSC, the numerical procedure implicitly 

includes both, the narrow d-bands and wide s-bands behavior, 

such as the one found in layered HTSC cuprates. Therefore, 

this kind of numerical treatment should be able to infer, which 

properties strong depend on εF, when elastic scattering is 

included. 

On the other hand, in nonequilibrium statistical mechanics, 

the ground state and the phase space for N particles are related 

quantities i.e., E - E0 = f N (<ε> - ε0), since it contains the 

degrees of freedom f and the averaged energy <ε> linked to a 

quantum number for each particle. The configuration space, 

and the phase space are related spaces, since <ε> includes an 

average using a distribution function which depends on time 

f(t), and we can make used of the Boltzmann kinetic equation 

for the τ-approximation (we called this a Wigner probabilistic 

distribution approach in our previous works, since it gives a 

classical window to the quantum world as Wigner 

probabilistic distributions are able to accomplish [45]. 

We have found that a space that links the two mentioned 

above spaces is the reduced phase space (RPS), where energy 

is conserved for the scattering processes. The RPS is given by 

two coordinates, i.e., the axes representing the real frequencies, 

and imaginary part of the zero temperature elastic scattering 

cross-section (ℜI/�(ω	 + �	0�)J,ℑI/�(ω	 + �	0�)J). The RPS 

has some important properties for the nonequilibrium 

statistical mechanics, when we make use of the parameters “l” 

and “�”; for a gas of dressed fermion quasiparticles, because is 

possible to move from a complete description of a 

non-equilibrium state, to an abbreviated description, using a 

single distribution function for one quasiparticle. Additionally, 

a numerical analysis in the reduced phase space, finds the 
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position in which the degrees of freedom change, indicating a 

transition between different physical phases, such as, the 

normal to the superconducting phase transition, and it is able 

to remarkably distinguish different physical behaviors within 

these phases (if we consider crystal group theory, alongside 

with a proper Fermi surface average of the elastic scattering 

cross-section, within the unitary limit for a 2D layer of 

Strontium-doped Lanthanum Cuprate). 

5. Recommendations 

The use of the reduced phase space based on the zero elastic 

scattering cross-section is a well-established procedure to 

study unconventional superconductors, where strontium 

atoms are present, as in Strontium-doped Lanthanum Cuprate, 

and Strontium Ruthenate. 

The direct analysis of the RPS using group theoretical 

considerations allowed us in the research [44], to predict the 

Miyake-Narikiyo tiny gap [43] in triplet superconductors 

using a TB approach. In addition, we were able to find the 

limit in which point nodes can be found for Strontium 

Ruthenate with nonmagnetic disorder in the work [55], and 

also, to infer how the superconducting gap varies for a reduce 

phase space with quasinodal behavior in the article [21]. We 

also linked the RPS to the phase and the configuration spaces. 

For the Strontium-doped Lanthanum Cuprate, we analyzed the 

RPS for the three scattering regimes, depending on the 

scattering lifetime, and the mean free path in the research [34]. 

However, we think that a world opens to study the inclusion 

of several quantum mechanical properties given by the 

number of states when considering quantities, such as, the 

density of states using the reduce phase space within the zero 

temperature scattering cross-section formalism. 
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